Topics in the June 2013 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2013-J-2:

Ionic Bonding

2013-J-3:

- Types of Intermolecular Forces
- First and Second Law of Thermodynamics

2013-J-4:

- Filling Energy Levels in Atoms Larger than Hydrogen
- Nuclear and Radiation Chemistry

2013-J-5:

- Periodic Table and the Periodic Trends
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2013-J-6:

• Bonding - MO theory (larger molecules)

2013-J-7:

- Lewis Structures
- VSEPR

2013-J-8:

- Thermochemistry
- Nitrogen Chemistry and Compounds
- Nitrogen in the Atmosphere

2013-J-9:

Chemical Equilibrium

2013-J-10:

- First and Second Law of Thermodynamics
- Gas Laws
- Nitrogen Chemistry and Compounds

2013-J-11:

• Equilibrium and Thermochemistry in Industrial Processes

2013-J-12:

- Electrolytic Cells
- Electrochemistry
- Batteries and Corrosion

2013-J-13:

- Electrochemistry
- Batteries and Corrosion

June 2013

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1A - CHEM1101

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

/		Marks
Pages	Max	Gained
2-10	30	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	6			
12	5			
13	8			
14	5			
15	8			
16	6			
18	5			
19	4			
20	5			
21	4			
22	7			
23	7			
Total	70			
Check	total			

2205(a)

• What is an ionic bond?	Marks 6
Why does ionic bonding favour the formation of macroscopic crystals rather than molecules?	
What information do you need to estimate the relative lattice energies of two chemically different salts?	_
	_

• Intermolecular forces are responsible for the physical properties of many compounds. What are dispersion forces?	Marks 3
The boiling points of F_2 , Cl_2 and Br_2 are 85, 239 and 338 K, respectively. Where	_
would you expect the boiling point of I ₂ ? Give reasons.	_
• The Second Law states that all observable processes must involve a net increase in entropy. When liquid water freezes into ice at 0 °C, the entropy of the water decreases. Explain how this is consistent with the Second Law.	2

• Write down the ground state electron configurations for the following species. Na is given as an example. Marks 4

Na 1s giv	Na is given as an example.		
Na	[Ne] $3s^1$		
K			
As			
Sr			
C^+			

Name the elements described by the following configurations.

$[Kr] 5s^2 4d^6$	
[Xe] $6s^2 5d^1 4f^{11}$	
	1.0 1.1

• Radioactivity may have damaging effects on humans but can also be used for medical imaging to potentially save lives. Which of alpha and gamma radiation is better suited for medical imaging? Give reasons.

4

Given nuclides with half-lives of minutes, hours or years, which would be best used for medical imaging? Explain.

	le as arranged by Mend nents based on those ar orks.		
	ve the same structure as predict the density of t		ormation in the
Element	Atomic Mass	Density (g cm ⁻³)	Bond length (pm)
Si	28	2.329	233
Sn	118		280
		[
		Answer:	

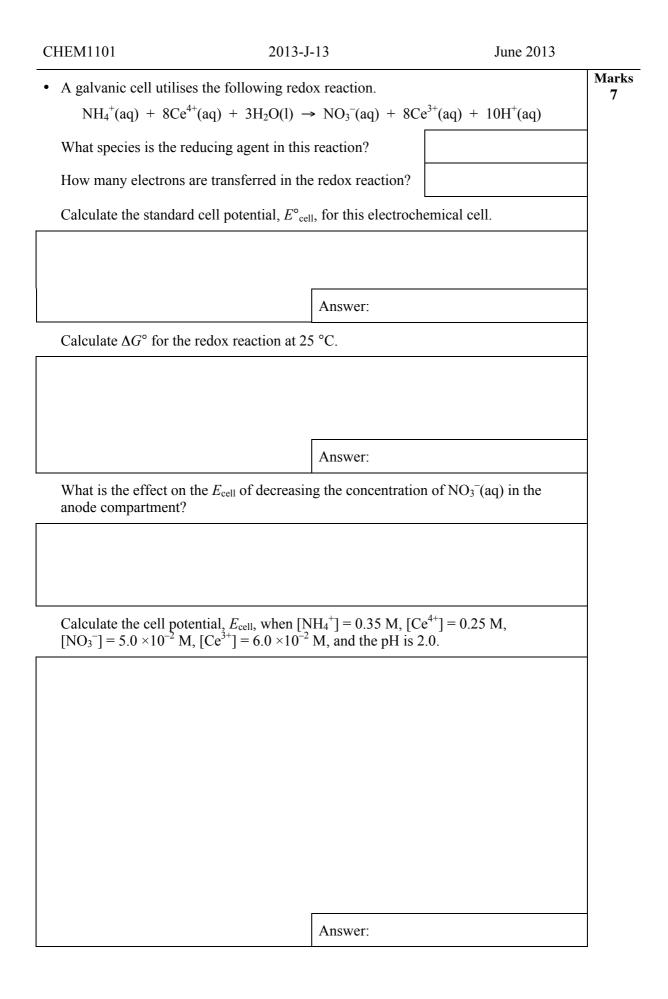
CHEM1101	2013-J-6	June 2013			
• Oxygen exists	in the troposphere as a diatomic mo	lecule.	Marks 8		
How many val	How many valence electrons in the O ₂ molecule?				
	orbital energy levels for O_2 are shown the valence electrons for oxygen, O_2				
	σ*	σ*			
	π*	π*			
Energy	π	πσ			
	σ*	σ*			
	σ	σ			
(a) What is th	e bond order for O ₂ ?				
(b) Clearly lal diagram.	bel a bonding orbital and an anti-bo	nding orbital on the left-hand			
(c) Clearly la	bel the HOMO of O_2 on the left-han	d diagram.			
· · ·	ht-hand diagram, indicate the lowes ich has no unpaired electrons.	t energy electronic configuration			
photon excites <i>same time</i> . W	It of liquid O_2 arises from an electro two molecules to the state indicated hat wavelength photon would be em to the ground state?	by the configuration in (d) at the			
	Answer	:	_		
	ronuclear diatomic species, isoelectrexpected to have similar spectroscop				

CHEM1101

2013-J-7

• Complete the following table for the molecules SF ₆ and SF ₄ .				
Molecule	Total number of valence electrons	Lewis structure	Shape of molecule	
SF ₆				
SF4				
		s quite inert, whilst sulfur tetrafl for the difference in reactivity b		

• 1.00 L of water is heated to 95 °C and then solid copper, initially at 25 °C, is immersed in it. What mass of copper was added if the final temperature of the water was 84 °C? Show all working.				
	Data: Specific heat capacity of Cu(s) is 0.39 J $g^{-1} K^{-1}$. Specific heat capacity of H ₂ O(l) is 4.184 J $g^{-1} K^{-1}$. The density of water is 1.0 g mL ⁻¹ .			
		-		
•	Answer: Atmospheric nitrogen is converted into ammonia or various oxides by both natural processes and those associated with human activity. Identify one process (either natural or due to human activity) that results in the conversion of N ₂ to either NH ₃ or an oxide of nitrogen and identify the nitrogen compound produced in that process.	2		


• Consider the following reaction.	Marks 4
$N_2O_4(g) \implies 2NO_2(g)$	
An equilibrium mixture in a 1.00 L container is found to contain $[N_2O_4] = 1.00$ M and $[NO_2] = 0.46$ M. The vessel is then compressed to half its original volume while the temperature is kept constant. Calculate the concentration $[N_2O_4]$ when the compressed system has come to equilibrium. Show all working.	le
Answer:	

Marks • Use the standard heats of formation provided to calculate the molar heat of 2 combustion of liquid methanol, CH₃OH, in oxygen to produce CO₂ and water. Your answer must include a balanced chemical equation for this reaction. Show all working. Data: Compound $H_2O(l)$ CH₃OH(1) $CO_2(g)$ $\Delta_{\rm f} H^{\rm o} / {\rm kJ} {\rm mol}^{-1}$ -285.9 -238.6 -393.5 Answer: • Calculate the volume change when 10.0 g of solid trinitrotoluene C₇H₅N₃O₆(s) 3 explosively decomposes via the following process at 2000. °C and 1.0 atm. $2C_7H_5N_3O_6(s) \rightarrow 12CO(g) + 5H_2(g) + 3N_2(g) + 2C(s)$ Assume all gases behave as ideal gases and neglect the volume of any solid phases. Show all working.

Answer:

Marks • The diagram below represents the Gibbs free energy change associated with the 4 formation of four different oxides. Temperature (°C) 0 100 200 300 400 500 600 700 800 900 1000 $2C + O_2 \rightarrow 2CO$ $2Sn + O_2 \rightarrow 2SnO$ ∆G (kJ mol^{−1}) -500 $2Zn + O_2 \rightarrow 2ZnO$ 4/3 AI + $O_2 \rightarrow 2/3 AI_2O_3$ -1000 Using the free energy data above, write down the equation and indicate with an arrow the direction of the expected spontaneous reaction under the following conditions. If no reaction occurs, write "no reaction". CO and Sn are mixed at 400 °C Al and ZnO are mixed at 400 °C CO and Sn are mixed at 900 °C Which oxide has the smallest (least negative) enthalpy of formation?

•	• How many hours does it take to form 10.0 L of O_2 measured at 99.8 kPa and 28 °C from water if a current of 1.3 A passes through the electrolysis cell?		
	Answer:		
•	In concentration cells no net chemical conversion occurs, however a measurable voltage is present between the two half-cells. Explain how the voltage is produced.	2	
•	Is H_2 a stronger reducing agent under acidic or basic conditions? Give reasons for your answer.	2	

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa = 1.013 bar	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	Μ	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р	10^{12}	tera	Т	

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_{3}^{-}(aq) + 10H^{+}(aq) + 8e^{-} \rightarrow NH_{4}^{+}(aq) + 3H_{2}O$	+0.88
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.136
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.136 -0.24
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.24 -0.28
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.24 -0.28 -0.40
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.24 -0.28 -0.40 -0.44
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.24 -0.28 -0.40 -0.44 -0.74
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.24 -0.28 -0.40 -0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.09 -2.36
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{r} -0.24 \\ -0.28 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\mathbf{v} = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{\log Q} (\text{at } 25 ^{\circ}\text{C})$
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n n n n n n n n n n n n n n n n n n n
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log \{ [A^-] / [HA] \}$	
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^{\rm o} = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$L = -A \frac{1}{4\pi\varepsilon_0 r} I_{\rm VA}$	Surface area of sphere = $4\pi r^2$

ACTINOIDS	LANTHANOIDS	1 ителностеке Н 1.008 1.0	1
	57 салания 138.91	4 веретлики Ве 9.012 12 мастики Мд 24.31 20 слистим Са 40.08 38 STROSTICM 87.62 56 валитим 87.62 87.82 87.82 88 88 88 88 88 88 88 88 88 88 88 88 8	2
		21 SCN DRIM SCN DRIM	ω
90 тноким р Тћ 232.04		22 TTEXNEM 122 TEXNEM 147.88 47.88 47.88 47.88 91.22 72 104 178.49 104 104 104 104	4
91 ратастилим Ра [231.0]	59 Аляеорумиим Рг 140.91	23 v.s.suturi 50.94 41 stottish 92.91 73 TASTALIN Ta 180.95 105 268	J
92 икалисм U 238.03	60 ^{NEODYMIUM} Nd 144.24	24 CHROMINA CR 52.00 42 MO 95.94 74 183.85 106 ss.modelina Sg [271]	6
93 Neptunium Np [237.0]	61 рекометничм Рт [144.9]	25 MANGANESE MANGANESE MANGANESE MAN 54.94 43 TECHSERIUM TC [98.91] 75 Re [186.2 107 Bh [274]	Γ
94 Ри [239.1]	62 замаяция Sm 150.4	26 100 26 100 26 100 55.85 44 101.07 76 0s 190.2 108 108 108 108 108 108 108 108	×
95 лменісіим Ат [243.1]	63 еккорим Е ц 151.96	27 Совалт Со 58.93 45 кнолим 102.91 77 1102.91 77 1102.22 109 матуевним 1109	9
96 ссияцем [[247.1]		28 Ni 58.69 46 Pd 106.4 78 Pd 106.4 195.09 110 Marstantim	10
97 р Вексе ллом р Вк 1] [247.1]		29 Copers Cu 63.55 47 Suver 47 Suver 47 Suver 47 Suver 47 50 107.87 79 60.5 111 196.97 111 196.97 8 8 8 8 8 8 8 8 8 8 8 8 8	11
		30 2nc 65.39 65.39 65.39 65.39 65.39 65.39 65.39 112.40 112.40 80 жессвах 112.40 200.59 200.59 200.59	12
98 САЛГРОКЛИМ СГ [252.1]		$\frac{37}{37}$ $\frac{32}{32}$ $\frac{1}{22}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$	13
99 Елязтелицм Es [252.1]	67 ногмилм НО 164.93	6 с.квоо С С С С С С С С С С С С С С С С С С	14
100 Fermium Fm [257.1]	68 еквим Е г 167.26	7 NITROGEN N 14.01 15 PHOSPHORUS 9 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 30.97 83 NITROGEN N 14.01 15 PHOSPHORUS N 14.01 15 PHOSPHORUS N 121.75 S1 208.98	15
101 менреlevium Md [256.1]	69 тнилим Тт 168.93	8 охуделя О 16.00 16.00 16.00 16.00 16.00 32.07 32.07 32.07 32.07 32.07 32.07 32.07 8.96 78.96 127.60 1210.0] 116 116 1210.0] 1210.0] 1210.0] 1210.0]	16
102 Nobelium No [259.1]	70 уттеквим Yb 173.04	9 FLIOORNE F 19,00 17 CI 35,45 35 35 BF 79,90 53 IoDINE F 126,90 85 At [210,0]	17
103 lawrencium L r [260.1]	71 ьотетим Lu 174.97	20.18 10 10 10 800 10 800 18 18 18 18 18 18 18 18 18 18 18 18 18	18

PERIODIC TABLE OF THE ELEMENTS

5102 anul

CHEWI101 - CHEWIZLKA IV

(q)\$077